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Abstract
In this paper, we consider the (2+1)-dimensional discrete fourth-order
nonisospectral problem. By using the Lax technique, three new (2+1)-
dimensional nonisospectral four-field integrable lattice hierarchies are
constructed. Their reductions yield three (1+1)-dimensional isospectral
four-field integrable lattice hierarchies due to Mlaszak–Marciniak. We
make a comparison between the (1+1)-dimensional discrete fourth-order
nonisospectral problem and the third-order nonisospectral problem. We
found that the integrable lattice hierarchies related to the discrete fourth-order
nonisospectral problem have new characteristics.

PACS number: 02.30.Ik

1. Introduction

As is well known, the investigation of multidimensional integrable systems is always an
important and attractive topic. In the continuous three-dimensional case, the Kadomtsev–
Petviashvili (KP) equation [1], arising in many fields of physics, such as fluid mechanics,
plasma physics, etc, is an important integrable system. We also know that the self-dual Yang–
Mills (SDYM) equation is of great importance in both physics and mathematics [2–4]. It has
been found that three-dimensional reductions of the SDYM yield many equations including
the KP, modified KP, (2+1)-dimensional N-wave, and Davey–Stewartson equations [5–7].
On the other hand, in a multidimensional discrete case, perhaps the best-known integrable
systems are the (2+1)-dimensional Toda lattice and its hierarchy and the (2+1)-dimensional
Volterra lattice [8, 9]. In [10], by using an r-matrix formalism, Blaszak and Marciniak (BM)
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constructed integrable lattice systems and their bi-Hamiltonian structure, which related to the
following m-order discrete isospectral problem:

Lmψn = λψn, (1.1)

where

Lm = Eα+m + uα+m−1E
α+m−1 + uα+m−2E

α+m−2 + uαEα (1.2)

with −m < α � −1, and the field function uj = uj (n, t) and wave function ψn = ψ(n, t)

(here n is discrete, and t is continuous), and E is the shift operator in the variable n, defined
Ejfn = fn+j . In [11], the m-order discrete isospectral problem is generalized to (2+1)
dimensions.

We recall that most of the known integrable systems (continuous or discrete, (1+1)-
dimensional or multidimensional) are related to isospectral problems. Nonisospectral
scattering problems, of course since the work of Calogero [12], have continued to be the
subject of much study, both in the continuous and discrete cases [13–19]. In the continuous
case, the first example is due to Calogero [12], and has as a subcase the equation

uxt = uxxxy + 4uxuxy + 2uxxuy. (1.3)

This equation arises as the compatibility condition of the linear system

ψxx + (ux − λ)ψ = 0, ψt = 4λψy + 2uyψx − uxyψ, (1.4)

where the spectral parameter λ = λ(y, t) satisfies the constraint [13, 14]

λt = 4λλy. (1.5)

Since the appearance of spectral problems (1.4)–(1.5), many papers on continuous (2+1)-
dimensional nonisospectral linear problems have been published (see, e.g., references in
[15]). As is well known, nonisospectral linear problems are of great importance in both
physics and mathematics. In physics, the variable coefficients soliton equations related to
nonisospectral linear problems, such as the variable coefficient KdV, variable coefficient
mKdV, variable coefficient KP, can describe nonlinear waves in non-uniformity media
[20–22]. On the other hand, the Painlevé equations (continuous and discrete), arising in many
field of physics including statistical mechanics, plasma physics, nonlinear waves, quantum
gravity and quantum field theory, can be reviewed as stationary flows of the nonisospectral
soliton equations (continuous and discrete) [23–27]. In [19], Levi and Grundland (LG)
considered a nonisospectral extension of the spectral problem (1.1) with m = 3. The
obtained lattice hierarchies related to the third-order spectral problem are the nonisospectral
generalizations of the BM three-field lattice hierarchy. However, as we have known, there is
little work for multidimensional discrete nonisospectral flows.

In this paper, we will concentrate on the construction of (2+1)-dimensional nonisospectral
integrable discrete hierarchies. This we do by considering the following (2+1)-dimensional
discrete fourth-order nonisospectral linear problem:

L4ψn = λψn, (1.6)

where the operator L4 takes the following form, respectively,

L4 = E + u0 + u−1E
−1 + u−2E

−2 + u−3E
−3, (1.7)

L4 = E2 + u1E + u0 + u−1E
−1 + u−2E

−2, (1.8)

L4 = E3 + u2E
2 + u1E + u0 + u−1E

−1. (1.9)
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Here, the field function uj = uj (n, t, y), the wave function ψn = ψ(n, t, y), n is discrete,
t and y are continuous, the spectral parameter λ = λ(t, y), and λt �= 0. It is obvious that
the (2+1)-dimensional discrete fourth-order nonisospectral linear problem is equivalent to the
following matrix form:

Eψn(λ) = Un(un, λ)ψn(λ), (1.10)

where the field function un = (pn, qn, rn, sn)
T , and the matrix Un(un, λ) is, respectively,

Un(un, λ) =




0 1 0 0
0 0 1 0
pn qn rn + λ sn

1 0 0 0


 , (1.11)

Un(un, λ) =




0 1 0 0
0 0 1 0
pn qn + λ rn sn

1 0 0 0


 , (1.12)

Un(un, λ) =




0 1 0 0
0 0 1 0

pn + λ qn rn sn

1 0 0 0


 . (1.13)

We assume that the time evolution of the wave function ψn satisfies the equation
dψn(λ)

dt
= ω(λ)

dψn(λ)

dy
+ V (m)

n (un, λ)ψn(λ), (1.14)

and the spectral parameter λ = λ(t, y) satisfies a nonisospectral condition of the form

λt = ω(λ)λy + β(λ), (1.15)

where ω(λ) and β(λ) are two functions to be specified. We can see that the spectral problem
(1.10) and (1.14) is an extension of the discrete third-order nonisospectral problem to the
(2+1)-dimensional and higher-order case and the spectral problem is also the discrete version
of the (2+1)-dimensional continuous spectral problem (1.4)–(1.5). By using the compatibility
condition of the system (1.10) and (1.14) with (1.15)

∂Un

∂t
+ β(λ)

∂Un

∂λ
− ω(λ)

∂Un

∂y
= V

(m)
n+1 Un − UnV

(m)
n , (1.16)

and the Lax technique, we will construct three new (2+1)-dimensional nonisospectral four-
field integrable lattice hierarchies. We will show that their reductions yield (1+1)-dimensional
isospectral four-field integrable lattice hierarchies due to BM. We will make a comparison
between (1+1)-dimensional discrete fourth-order nonisospectral problems and third-order
nonisospectral problems. We find that integrable lattice hierarchies related to the discrete
fourth-order nonisospectral problems have new characteristics. We remark here that the
lattice equation hierarchy derived from the linear spectral equation is integrable in the Lax
sense.

2. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchies

In this section, we construct new (2+1)-dimensional nonisospectral four-field integrable lattice
hierarchies by considering the (2+1)-dimensional discrete nonisospectral linear problem
(1.10) and (1.14). Our aim is to seek the proper matrix V (m)

n (λ)=
(
v

(m)
ij (n, λ)

)
4×4 with

vij = vij (A(λ), B(λ), C(λ),D(λ)) such that the nonisospectral discrete zero curvature
equation (1.16) yields the (2+1)-dimensional integrable lattice hierarchy.
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2.1. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to
the nonisospectral linear problem (1.10) and (1.14) with (1.11)

Let us first consider the (2+1) discrete nonisospectral linear problem (1.10) and (1.14) with
(1.11). A new (2+1)-dimensional nonisospectral integrable lattice hierarchy related to the
spectral problem will be constructed. A direct calculation gives

v11 = −(E2 + E−1)(pA + qB) − E−2(r + λ)C − (E−2 + E−1 + 1)sD,

v12 = E−2C − E−1(c + λ)B, v13 = E−1B, v14 = sA,

v21 = pB + EsA, v22 = qB + EpA + E(v11 − pA),

v23 = E−1C, v24 = sB,

v31 = pC + EsB, v32 = qC + EpB + E2sA,

v33 = (r + λ)C + EqB + E2pA + E2(v11 − pA), v34 = sC,

(2.1)

v41 = E−3C − E−2(r + λ)B − E−1qA,

v42 = E−2B − E−1(r + λ)A, v43 = E−1A,

v44 = E−1(v11 − pA),

and

K℘̄ − λJ ℘̄ = F (1), (2.2)

where

℘̄ = (A(λ), B(λ), C(λ),D(λ))T , F (1) = ut − ω(λ)uy + β(λ)θ.

Here A,B,C and D are functions of the field un and spectral λ, and vector θ = (0, 0, 1, 0)T ,
and K and J are two skew-symmetric matrix operators given by

K =




k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44


 (2.3)

and

J =




0 Es − sE−2 p(1 − E−2) 0
E2s − sE−1 Ep − pE−1 q(1 − E−1) 0
(E2 − 1)p (E − 1)q 0 (E3 − 1)s

0 0 s(1 − E−3) 0


 , (2.4)

with

k11 = p(E−2 − E)(1 + E)p − qEs + sE−1q,

k12 = p(E−2 − 1)(E + 1)q − rEs + sE−2r,

k13 = p(E−2 − 1)r + Es − sE−3, k14 = p(E−3 − 1)(E + E2 + E3)s,

k21 = q(1 − E2)(1 + E−1)p − rE2s + sE−1r,

k22 = q(E−1 − E)q + pE−1r − rEp + E2s − sE−2,

k23 = Ep − pE−2 + q(E−1 − 1)r, k24 = q(1 − E3)(1 + E−1)s,

k31 = r(1 − E2)p + E3s − sE−1, k32 = E2p − pE−1 − r(E − 1)q,

k33 = Eq − qE−1, k34 = r(1 − E3)s, k41 = s(1 − E3)(E−1 + E−2 + E−3)s,

k42 = s(E−3 − 1)(1 + E)q, k43 = s(E−3 − 1)r,

k44 = s(E−3 − E)(1 + E + E2)s.

(2.5)



(2+1)-dimensional integrable lattice hierarchies related to discrete fourth-order nonisospectral problems 13035

By the Lax technique, we assume expansions for A,B,C and D of the form

A =
m∑

j=−1

aj (n, t, y)λm−j , B =
m∑

j=−1

bj (n, t, y)λm−j ,

C =
m∑

j=−1

cj (n, t, y)λm−j , D =
m∑

j=−1

dj (n, t, y)λm−j ,

(2.6)

and for ω(λ) and β(λ) of the form

ω(λ) =
m−1∑
j=−2

ω
(1)
j λm−j , β(λ) =

m∑
j=−2

β
(1)
j λm−j . (2.7)

Substituting in equations (2.2), and separating different powers of λ, we obtain the equations

J (a−1, b−1, c−1, d−1)
T = ω

(1)
−2uy − β

(1)
−2θ (2.8)

and

K℘j−1 = J℘j − F
(1)
j−1, j = 0, 1, 2, . . . , m, (2.9)

where

℘j = (aj , bj , cj , dj )
T , F

(1)
j = ω

(1)
j uy − β

(1)
j θ. (2.10)

Then the discrete zero curvature equation (1.16) yields the following four-field lattice
hierarchy:

(un)tm = Xm, m � −1, (2.11)

where

Xm = K℘m − β(1)
m θ.

Equations (2.8)–(2.9) can be solved as



a−1

b−1

c−1

d−1


 = ω

(1)
−2J

−1uy − β
(1)
−2J

−1θ +




0
0

α−1

0


 (2.12)

and

℘j = ω
(1)
j−1J

−1uy + J−1K℘j−1 − β
(1)
j−1J

−1θ +




0
0
αj

0


 , j = 0, 1, 2, . . . , m, (2.13)

where J−1, the inverse operator of J , is given by

J−1 =




J11 (E2s − sE−1)−1 0 J14

(Es − sE−2)−1 0 0 J24

0 0 0 (1 − E−3)−1s−1

J41 J42 s−1(E3 − 1)−1 J44


 . (2.14)
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Here

J11 = (E2s − sE−1)−1(pE−1 − Ep)(Es − sE−2)−1,

J14 = (E2s − sE−1)−1(pE−1 − Ep)(sE−2 − Es)−1[p(E2 + E)�s−1]

− (E2s − sE−1)−1[q�E2s−1],

J24 = (sE−2 − Es)−1)[p(E2 + E)�s−1],

J41 = s−1�(E + 1)[p(sE−1 − E2s)−1(pE−1 − Ep)(Es − sE−2)−1]

− s−1�[q(Es − sE−2)−1],

J42 = s−1(E + 1)�[p(sE−1 − E2s)−1],

J44 = −s−1�[(E + 1)pJ14 + qJ24],

where the operator � = (E2 + E + 1)−1 = ∑∞
j=0(E

3j − E3j+1). Setting Q = KJ−1, our
lattice hierarchy (2.11) can be written as

(un)tm =
m+2∑
j=1

ω
(1)
m−jQ

jun,y +
m+1∑
j=0

αm−jQ
jgn −

m+2∑
j=0

β
(1)
m−jQ

jθ, (2.15)

where

gn =




pn(rn−2 − rn) + sn+1 − sn

pn+1 − pn + qn(rn−1 − rn)

qn+1 − qn

sn(rn−3 − rn)


 . (2.16)

Equation (2.15) is a new (2+1)-dimensional nonisospectral four-field integrable lattice
hierarchy, which is the generalization of a (1+1)-dimensional isospectral BM four-field lattice
hierarchy. The first term of the right-hand-side of the hierarchy corresponds to an extension
of the BM lattice hierarchy to (2+1) dimensions; the second term consists of the standard
isospectral BM four-field lattice flows. The third term consists of additional (1+1)-dimensional
nonisospectral terms. It is worth remarking here that the structure of the (2+1)-dimensional
nonisospectral lattice hierarchy is new and interesting. Under the reduction ∂y = 0, the lattice
hierarchy reduces to (1+1)-dimensional lattice hierarchy

(un)tm =
m+1∑
j=0

αm−jQ
jgn −

m+2∑
j=0

β
(1)
m−jQ

jθ, (2.17)

which is a nonisospectral extension of the BM four-field lattice hierarchy. We give now
the first set of equations of our lattice hierarchy (2.17). Setting m = −1, α−1 = 1, and
m = 0, α−1 = 1, α0 = 0, and β

(1)
−2 = a, we have, respectively,

(un)t = gn − β
(1)
−1θ + ae(1)

n (2.18)

and

(un)t = Qgn − (
β

(1)
0 + aQ2

)
θ + β

(1)
−1e

(1)
n , (2.19)

where

e(1)
n =




3pn

2qn

rn

4sn


 , Qgn =




pn(qn−2 + qn−1 − qn − qn+1 − r2
n−2 + r2

n)

+sn(rn−3 + rn−2) − sn+1(rn + rn+1)

qn(qn−1 − qn+1 − r2
n−1 + r2

n) + pn(rn−2 + rn−1)

−pn+1(rn + rn+1) + sn+2 − sn

pn+2 − pn − qn+1(rn + rn+1) + qn(rn−1 + rn)

sn(qn−3 + qn−2 − qn − qn+1 − r2
n−3 + r2

n)




.
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Under the reductions ∂y = 0 and λt = 0, the last two equations lead to the first equations of
the (1+1)-dimensional isospectral B-M four-field lattice hierarchy.

2.2. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to
the nonisospectral linear problem (1.10) and (1.14) with (1.12)

In this subsection, we will discuss the (2+1) discrete nonisospectral linear problem (1.10) and
(1.14) with (1.12). Another new (2+1)-dimensional nonisospectral four-field integrable lattice
hierarchy related to the spectral problem will be obtained. First, we have

v11 = −E−1[(q + λ)B + (E + 1)−1(pA + rC) + sD],

v12 = E−2C − E−1rB, v13 = E−1B, v14 = sA,

v21 = pB + EsA, v22 = −E−1[(E + 1)−1(pA + rC) + sD], v23 = E−1C,

v24 = sB, v31 = pC + EsB, v32 = (q + λ)C + EpB + E2sA, (2.20)

v33 = (E + 1)−1(rC − EpA) − E−1sD, v34 = sC,

v41 = E−3C − E−2rB − E−1(q + λ)A, v42 = E−2B − E−1rA,

v43 = E−1A, v44 = −E−2[(E + (E + 1)−1)pA + (q + λ)B + sD + (E + 1)−1rC]

and

H℘ − λP℘ = F (2), (2.21)

where

℘ = (D(λ),A(λ), B(λ), C(λ))T , F (2) = vt − ω(λ)vy + β(λ)θ.

Here v = (sn, pn, qn, rn)
T , and H and P are two skew-symmetric matrix operators described

as

H =




s(E−2 − E2)s s(E−2 − E)p s(E−2 − 1)q s(E−2 − E−1)r

p(E−1 − E2)s h22 p(E−1 − 1)q + sE−2r − rEs h24

q(1 − E2)s q(1 − E)p − rE2s + sE−1r E2s − sE−2 + pE−1r − rEp Ep − pE−2

r(E − E2)s h42 E2p − pE−1 h44




(2.22)

with

h22 = p(E + 1)−1(E−1 − E2)p − qEs + sE−1q,

h24 = Es − sE−3 + p(E−1 − 1)(E + 1)−1r,

h42 = E3s − sE−1 + r(E − E2)(E + 1)−1p,

h44 = Eq − qE−1 + r(E − 1)(E + 1)−1r

and

P =




0 0 s(1 − E−2) 0
0 Es − sE−1 p(1 − E−1) 0

(E2 − 1)s (E − 1)p 0 0
0 0 0 E−1 − E


 . (2.23)

Assuming the same expansions for A,B,C,D, described by equation (2.6), and ω and β

given by equation (2.7) with the replace ω
(1)
j → ω

(2)
j and β

(1)
j → β

(2)
j , and then separating

different powers of λ, we obtain the equations

P (d−1, a−1, b−1, c−1)
T = ω

(2)
−2vy − β

(2)
−2θ (2.24)
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and

H℘j−1 = P℘j − F
(2)
j−1, j = 0, 1, 2, . . . , m, (2.25)

where

℘j = (
dj , aj , bj , cj

)T
, F

(2)
j = ω

(2)
j vy − β

(2)
j θ. (2.26)

Then the discrete zero curvature equation (1.16) yields the following four-field lattice
hierarchy:

(un)tm = Ym, m � −1, (2.27)

where

Ym = H℘m − β(2)
m θ.

We solve equations (2.24)–(2.25) as


d−1

a−1

b−1

c−1


 = ω

(2)
−2P

−1vy − 1

2
s−1β

(2)
−2n




1
0
0
0


 +




0
0

α−1

γ−1


 (2.28)

and

℘j = ω
(2)
j−1P

−1vy + P −1H℘j−1 − 1

2
s−1β

(2)
j−1n




1
0
0
0


 +




0
0
αj

γj


 , j = 0, 1, 2, . . . , m,

(2.29)

where

P −1 =




p11 s−1(E + 1)−1[p(sE−1 − Es)−1] s−1(E2 − 1)−1 0

(sE−1 − Es)−1[p(1 + E−1)−1s−1] (Es − sE−1)−1 0 0

(1 − E−2)−1s−1 0 0 0

0 0 0 (E−1 − E)−1




(2.30)

with

p11 = s−1(E + 1)−1[p(Es − sE−1)−1](p(E−1 + 1)−1s−1).

Setting W = HP −1, our lattice hierarchy (2.27) can be written as

(vn)tm =
m+2∑
j=1

ω
(2)
m−jW

jvn,y +
m+1∑
j=0

(αm−jW
jφn + γm−jW

jχn) −
m+2∑
j=0

β
(2)
m−jW

jθ, (2.31)

where

φn =




sn(qn−2 − qn)

pn(qn−1 − qn) + snrn−2 − rnsn+1

sn+2 − sn + pnrn−1 − rnpn+1

pn+2 − pn


 , (2.32)

χn =




sn(rn−2 − rn−1)

sn+1 − sn + pn(E + 1)−1(rn−1 − rn)

pn+1 − pn

qn+1 − qn + rn(E + 1)−1(rn+1 − rn)


 . (2.33)
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The structure of the (2+1) nonisospectral lattice hierarchy is the same as that of the lattice
hierarchy (2.15). Under the reduction ∂y = 0, the lattice hierarchy leads to another (1+1)-
dimensional nonisospectral BM four-field lattice hierarchy:

(vn)tm =
m+1∑
j=0

(αm−jW
jφn + γm−jW

jχn) −
m+2∑
j=0

β
(2)
m−jW

jθ. (2.34)

Let us write down the first members of our lattice hierarchy (2.34). Setting m = −1, α−1 =
1, γ−1 = 0 or m = −1, α−1 = 0, γ−1 = 1, and β

(2)
−2 = 2b, we have, respectively,

(vn)t = φn − β
(2)
−1θ + be(2)

n (2.35)

and

(vn)t = χn − β
(2)
−1θ + be(2)

n , (2.36)

where e(2)
n = (4sn, 3pn, 2qn, rn)

T . Under the reductions λt = 0, the last two equations lead to
the first equations of another (1+1)-dimensional isospectral BM four-field lattice hierarchy.

2.3. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to
the nonisospectral linear problem (1.10) and (1.14) with (1.13)

In this subsection, the third new (2+1)-dimensional nonisospectral four-field integrable lattice
hierarchy related to nonisospectral linear problem (1.10) and (1.14) with (1.13) will be derived.
From the discrete zero curve equation, we have

v11 = −�[(E + 1)qB + rC + sD], v12 = E−2C − E−1rB,

v13 = E−1B, v14 = sA, v21 = (p + λ)B + EsA, v22 = qB + EV11,

v23 = E−1C, v24 = sB, v31 = (p + λ)C + EsB,

v32 = E2sA + E(p + λ)B + qC, v33 = EqB + rC + E2V11, v34 = sC,

v41 = E−3C − E−2rB − E−1qA, v42 = E−2B − E−1rA,

v43 = E−1A, v44 = E−1V11 − E−1(p + λ)A (2.37)

and

L℘ − λM℘ = F (3), (2.38)

where

L =




s(E−1 − E3)�s s(E−1 − 1)p s(E−1 − E)�q s(E−1 − 1)�r

p(1 − E)s sE−1q − qEs sE−2r − rEs Es − sE−3

q(E − E3)�s sE−1r − rE2s E2s − sE−2 + pE−1r − rEp + q(E2 − 1)�q Ep − pE−2 + q(E − 1)�r

r(E2 − E3)�s E3s − sE−1 E2p − pE−1 + r(E2 − E)�q Eq − qE−1 + r(E2 − 1)�r


 ,

(2.39)

M =




0 s(1 − E−1) 0 0
(E − 1)s 0 0 0

0 0 rE − E−1r E−2 − E

0 0 E−1 − E2 0


 , (2.40)

and

F (3) = vt − ω(λ)vy + β(λ)ζ,



13040 H-W Tam and Z-N Zhu

with ζ = (0, 1, 0, 0)T . Assuming expansions for A,B,C, and D of the form given by (2.6)
and ω(λ) and β(λ) of the form given by (2.7) with the change ω

(1)
j → ω

(3)
j and β

(1)
j → β

(3)
j ,

and separating different powers of λ, we obtain the following equations:

M (d−1, a−1, b−1, c−1)
T = ω

(3)
−2uy − β

(3)
−2ζ (2.41)

and

L℘j−1 = M℘j − F
(3)
j−1, j = 0, 1, 2, . . . , m. (2.42)

We can see that the discrete zero curvature equation (1.16) yields the following four-field
lattice hierarchy:

(vn)tm = Zm, m � −1, (2.43)

where

Zm = L℘m − β(3)
m ζ.

Equations (2.41)–(2.42) can be solved as

(d−1, a−1, b−1, c−1)
T = e−1 + ω

(3)
−2M

−1vy − s−1β
(3)
−2n (1, 0, 0, 0)T , (2.44)

where e−1 = (0, µ−1, γ−1, η−1 + γ−1�rn+1)
T , and

℘j = M−1L℘j−1 + ej + ω
(3)
j−1M

−1vy − s−1β
(3)
j−1n (1, 0, 0, 0)T , j = 0, 1, 2, . . . , m,

(2.45)

with ej = (0, µj , γj , ηj + γj�rn+1)
T . Here the matrix operator M−1 has the form

M−1 =




0 s−1(E − 1)−1 0 0
E(E − 1)−1s−1 0 0 0

0 0 0 (1 − E3)−1E

0 0 (1 − E3)−1E2 (1 − E3)−1E2(rE − E−1r)(E3 − 1)−1E


,

(2.46)

Setting R = LM−1, we can write the lattice hierarchy (2.43) as

(vn)tm =
m+2∑
j=1

ω
(3)
m−jR

jvn,y +
m+1∑
j=0

RjLem−j −
m+2∑
j=0

β
(3)
m−jR

j ζ. (2.47)

Under the reduction ∂y = 0, it yields the third new (1+1)-dimensional nonisospectral B-M
four-field lattice hierarchy:

(vn)tm =
m+1∑
j=0

RjLem−j −
m+2∑
j=0

β
(3)
m−jR

j ζ. (2.48)

Let us write down the first members of our lattice hierarchies (2.47) and (2.48). Setting
m = −1, and β

(3)
−2 = 3c, we have, respectively,

(vn)t = Le−1 + ω
(3)
−2Rvn,y + fn (2.49)

and

(vn)t = Le−1 + fn, (2.50)

where

fn = ce(2)
n − β

(3)
−1ζ.
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Furthermore, choosing µ−1 = 1, γ−1 = η−1 = 0, or µ−1 = γ−1 = 0, η−1 = 1, or
µ−1 = η−1 = 0, γ−1 = 1, and noting (E2 + E + 1)−1n = (n − 1)/3, we obtain the following
three lattice equation, respectively,

(vn)t =




sn(pn−1 − pn)

qn−1sn − qnsn+1

rn−1sn − rnsn+2

sn+3 − sn


 + fn, (2.51)

(vn)t =




sn�(rn−1 − rn)

sn+1 − sn

pn+1 − pn + qn�(rn+1 − rn)

qn+1 − qn + rn�(rn+2 − rn)


 + fn (2.52)

and

(vn)t =




sn�(qn−1 − qn+1) + sn(E − 1)�(rn−1�rn)

rn−2sn − rnsn+1 + sn+1�rn+2 − sn�rn−2

pnrn−1 − rnpn+1 − sn + sn+2 + qn(E − 1)�[(E + 1)qn + rn�rn+1]
−pn�rn−1 + pn+1�rn+2

pn+2 − pn + rn�(E2 − 1)(qn + rn�rn+1)

+qn+1�rn+2 − qn�rn




+ fn. (2.53)

Under the isospectral case, the last three equations become the first seed equations of the third
(1+1)- isospectral BM four-field lattice hierarchy.

3. A comparison between the discrete fourth-order spectral problem and the discrete
third-order spectral problem

In this section, we make a comparison between the discrete fourth-order spectral problem and
the discrete third-order spectral problem. First we note that in the special case sn = 0,
the discrete fourth-order spectral problem (1.10) with (1.11) and (1.12) reduces to the
corresponding discrete third-order spectral problem, and thus the obtained (2+1) four-field
nonisospectral lattice hierarchies (2.15) and (2.31) reduces to (2+1) three-field nonisospectral
lattice hierarchies, respectively. However, the discrete fourth-order spectral problem (1.10)
with (1.13) cannot reduce to a proper discrete third-order spectral problem. Let us consider the
first members (2.18) and (2.35) of (1+1)-dimensional nonisospectral lattice hierarchies (2.17)
and (2.34). In the special sn = 0, the two four-field lattice equations reduce to the following
three-field lattice equations, respectively,

ṗn = pn(rn−2 − rn + 3a)

q̇n = pn+1 − pn + qn(rn−1 − rn + 2a) (3.1)

ṙn = qn+1 − qn + arn − β
(1)
−1

and

ṗn = pn(qn−1 − qn + 3b)

q̇n = pnrn−1 − pn+1rn + 2bqn − β
(2)
−1 (3.2)

ṙn = pn+2 − pn + brn.
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Applying the transformation

pn = −eαn+1−αn−αn−1+αn−2

qn = −d2αn

dt2
+ a

dαn

dt
− 3

4
a2n(n − 1) + β

(1)
−1n (3.3)

rn = dαn

dt
− dαn+1

dt
+

3

2
an

to equation (3.1) and the transformation

pn = eαn−1−2αn+αn+1

qn = dαn

dt
− dαn+1

dt
+ 3bn (3.4)

rn =
(

d2αn+1

dt2
− 2b

dαn+1

dt
+ 3b2n(n + 1) − β

(2)
−1(n + 1)

)
e2αn+1−αn−αn+2

to equation (3.2), we obtain, respectively,
d3αn

dt3
− 3

2
a

d2αn

dt2
+

1

2
a2 dαn

dt
= 3

8
a3n(n − 1) − 1

2
aβ

(1)
−1n

+

(
d2αn

dt2
− a

dαn

dt
+

3

4
a2n(n − 1) − β

(1)
−1n

) (
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)

+ eαn+2−αn+1−αn+αn−1 − eαn+1−αn−αn−1+αn−2 (3.5)

and
d3αn

dt3
− 3b

d2αn

dt2
+ 2b2 dαn

dt
= 3b3n(n − 1) − β

(2)
−1bn

+

(
d2αn

dt2
− 2b

dαn

dt
+ 3b2n(n − 1) − β

(2)
−1n

) (
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)

+ eαn+2−αn+1−αn+αn−1 − eαn+1−αn−αn−1+αn−2 . (3.6)

The two equations are higher-order differential-difference equations of the Toda type with an
n-dependent coefficient. Under the isospectral case, the two equations yield a equation of the
Toda type:
d3αn

dt3
= d2αn

dt2

(
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)
+ eαn+2−αn+1−αn+αn−1 − eαn+1−αn−αn−1+αn−2 (3.7)

This conclusion is the same as that observed by LG in [19]. However, for the nonisospectral
case, equation (3.5) is different from equation (3.6), though in the special case b =
a/2, β

(1)
−1 = β

(2)
−1 , the two equations are same. Let us turn to four-field nonisospectral lattice

equations (2.18), (2.35), and (2.51). We find that the structures of the four-field nonisospectral
lattice equations are very complicated. In fact, it is very difficult to write the four-field
nonisospectral lattice equations as evolution equations for the one-field αn(t). Applying the
transformation

sn = eαn−2−αn−3+αn−αn+1

rn = dαn+1

dt
− dαn

dt
+

4

3
an

qn = d2αn

dt2
− a

dαn

dt
− 2

3
a2n(n − 1) + β

(1)
−1n

pn = (E − 1)−1

[
d3αn

dt3
− 5

3
a

d2αn

dt2
+

2

3
a2 dαn

dt
+

4

9
a3n(n − 1) − 2

3
aβ

(1)
−1n

+

(
d2αn

dt2
− a

dαn

dt
− 2

3
a2n(n − 1) + β

(1)
−1n

) (
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)]
(3.8)
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to equation (2.18) and the transformation

sn = eαn−1−2αn+αn+1

pn = dαn

dt
− dαn+1

dt
+ 4cn

qn =
(

d2αn+1

dt2
− 3c

dαn+1

dt
+ 6c2n(n + 1) − β

(3)
−1n

)
e2αn+1−αn−αn+2

rn = eαn+1+αn+2−αn−αn+3(E − 1)−1

[(
2c +

dαn+1

dt
− 2

dαn+2

dt
+

dαn+3

dt

) (
d2αn+2

dt2

− 3c
dαn+2

dt
+ 6c2(n + 2)(n + 1) − β

(3)
−1(n + 1)

)
− d3αn+2

dt3
+ 3c

d2αn+2

dt2

]
(3.9)

to equation (2.51), we have, respectively,

(E − 1)−1 d

dt

[
d3αn

dt3
− 5

3
a

d2αn

dt2
+

2

3
a2 dαn

dt
+

4

9
a3n(n − 1) − 2

3
aβ

(1)
−1n

+

(
d2αn

dt2
− a

dαn

dt
− 2

3
a2n(n − 1) + β

(1)
−1n

) (
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)]

=
(

dαn−1

dt
− dαn−2

dt
+

dαn

dt
− dαn+1

dt
+

1

3
a

)

×(E − 1)−1

[
d3αn

dt3
− 5

3
a

d2αn

dt2
+

2

3
a2 dαn

dt
+

4

9
a3n(n − 1) − 2

3
aβ

(1)
−1n

+

(
d2αn

dt2
− a

dαn

dt
− 2

3
a2n(n − 1) + β

(1)
−1n

) (
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)]

+ eαn−1−αn−2+αn+1−αn+2 − eαn−2−αn−3+αn−αn+1 (3.10)

and

d

dt

[
eαn+1+αn+2−αn−αn+3(E − 1)−1

[(
2c +

dαn+1

dt
− 2

dαn+2

dt
+

dαn+3

dt

)(
d2αn+2

dt2

− 3c
dαn+2

dt
+ 6c2(n + 2)(n + 1) − β

(3)
−1(n + 1)

)
− d3αn+2

dt3
+ 3c

d2αn+2

dt2

]]

= c eαn+1+αn+2−αn−αn+3(E − 1)−1

[(
2c +

dαn+1

dt
− 2

dαn+2

dt
+

dαn+3

dt

) (
d2αn+2

dt2

− 3c
dαn+2

dt
+ 6c2(n + 2)(n + 1) − β

(3)
−1(n + 1)

)
− d3αn+2

dt3
+ 3c

d2αn+2

dt2

]

+ eαn+2−2αn+3+αn+4 − eαn−1−2αn+αn+1 . (3.11)

In the isospectral case, the last two equations reduce to, respectively,

(E − 1)−1 d

dt

[
d3αn

dt3
+

d2αn

dt2

(
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)]

=
(

dαn−1

dt
− dαn−2

dt
+

dαn

dt
− dαn+1

dt

)

× (E − 1)−1

[
d3αn

dt3
+

d2αn

dt2

(
dαn+1

dt
− 2

dαn

dt
+

dαn−1

dt

)]

+ eαn−1−αn−2+αn+1−αn+2 − eαn−2−αn−3+αn−αn+1 (3.12)
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and

d

dt

{
eαn+1+αn+2−αn−αn+3(E − 1)−1

[
d2αn+2

dt2

(
dαn+1

dt
− 2

dαn+2

dt
+

dαn+3

dt

)
− d3αn+2

dt3

]}

= eαn+2−2αn+3+αn+4 − eαn−1−2αn+αn+1 (3.13)

We can see that the nonisospectral lattice equations (3.10) and (3.11) and isospectral lattice
equations (3.12) and (3.13) are nonlocal. As for the four-field nonisospectral lattice
equation (2.35), we have not found its form of one-field αn(t), though its reduction is a
variable coefficient Toda-type equation. We thus conclude that the discrete four-order spectral
problem is more complicated than the discrete three-order spectral problem.

4. Conclusions

In this paper, we have discussed completely (2+1)-dimensional discrete fourth-order
nonisospectral problems and constructed three new (2+1)-dimensional nonisospectral four-
field integrable lattice hierarchies, which generalize (1+1)-dimensional isospectral BM four-
field integrable lattice hierarchies to (2+1) dimensions and nonisospectral case. By making a
comparison between the (1+1)-dimensional discrete fourth-order nonisospectral problem and
discrete the third-order nonisospectral problem, we found that lattice hierarchies related to
the fourth-order nonisospectral problem have new characteristics. We will further investigate
the obtained (2+1)-dimensional nonisospectral lattice hierarchies including their physical
applications, and the other integrability, such as the Hamiltonian structures, infinitely many
conservation laws and soliton solutions.
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generalized discrete second Painlevé hierarchy Chaos Solitons Fractals 29 862–70
[27] Gordoa P R, Pickering A and Zhu Z N 2007 New 2+1 dimensional nonisospectral Toda lattice hierarchy

J. Math. Phys. 48 023515

http://dx.doi.org/10.1063/1.1324651
http://dx.doi.org/10.1063/1.533055
http://dx.doi.org/10.1088/0305-4470/12/7/002
http://dx.doi.org/10.1088/0305-4470/12/7/003
http://dx.doi.org/10.1088/0305-4470/35/6/101
http://dx.doi.org/10.1103/PhysRevLett.37.693
http://dx.doi.org/10.1007/BF01016397
http://dx.doi.org/10.1023/A:1026602012111
http://dx.doi.org/10.1063/1.2041347
http://dx.doi.org/10.1016/j.chaos.2005.08.060
http://dx.doi.org/10.1063/1.2436983

	1. Introduction
	2. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchies
	2.1. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to the nonisospectral linear problem (1.10) and (1.14) with (1.11)
	2.2. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to the nonisospectral linear problem (1.10) and (1.14) with (1.12)
	2.3. New (2+1)-dimensional nonisospectral four-field integrable lattice hierarchy related to the nonisospectral linear problem (1.10) and (1.14) with (1.13)

	3. A comparison between the discrete fourth-order spectral problem and the discrete third-order spectral problem
	4. Conclusions
	Acknowledgments
	References

